Symmetric identities on Bernoulli polynomials

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Symmetric Identities for the Generalized Higher-order q-Bernoulli Polynomials

access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract In this paper, we give identities of symmetry for the generalized higher-order q-Bernoulli polynomials attached to χ which are derived from the symmetric properties of multivariate p-adic i...

متن کامل

On Identities Involving Bernoulli and Euler Polynomials

A class of identities satisfied by both Bernoulli and Euler polynomials is established. Recurrence relations for Bernoulli and Euler numbers are derived.

متن کامل

Some symmetric identities for the generalized Bernoulli, Euler and Genocchi polynomials associated with Hermite polynomials

In 2008, Liu and Wang established various symmetric identities for Bernoulli, Euler and Genocchi polynomials. In this paper, we extend these identities in a unified and generalized form to families of Hermite-Bernoulli, Euler and Genocchi polynomials. The procedure followed is that of generating functions. Some relevant connections of the general theory developed here with the results obtained ...

متن کامل

Arith . IDENTITIES CONCERNING BERNOULLI AND EULER POLYNOMIALS

We establish two general identities for Bernoulli and Euler polynomials, which are of a new type and have many consequences. The most striking result in this paper is as follows: If n is a positive integer, r + s + t = n and x + y + z = 1, then we have r s t x y n + s t r y z n + t r s z x n = 0 where s t x y n := n k=0 (−1) k s k t n − k B n−k (x)B k (y). It is interesting to compare this with...

متن کامل

Convolution Identities for Bernoulli and Genocchi Polynomials

The main purpose of this paper is to derive various Matiyasevich-Miki-Gessel type convolution identities for Bernoulli and Genocchi polynomials and numbers by applying some Euler type identities with two parameters.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Number Theory

سال: 2009

ISSN: 0022-314X

DOI: 10.1016/j.jnt.2009.05.018